On the stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Jensen functional equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cauchy–rassias Stability of Homomorphisms Associated to a Pexiderized Cauchy–jensen Type Functional Equation

We use a fixed point method to prove the Cauchy–Rassias stability of homomorphisms associated to the Pexiderized Cauchy–Jensen type functional equation r f ( x+ y r ) + sg ( x− y s ) = 2h(x), r,s ∈ R\{0}

متن کامل

Stability of the Jensen Functional Equation in Fuzzy Banach Algebras

In this paper, we prove the Hyers-Ulam stability of the Jensen functional equation in fuzzy Banach algebras by using fixed point method and by using direct method.

متن کامل

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras

In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...

متن کامل

On the stability of the Pexiderized cubic functional equation in multi-normed spaces

In this paper, we investigate the Hyers-Ulam stability of the orthogonally  cubic equation and  Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the  $2$-variables cubic  equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...

متن کامل

Stability of Homomorphisms on Jb∗ –triples Associated to a Cauchy–jensen Type Functional Equation

In this paper, we investigate homomorphisms between JB∗ -triples, and derivations on JB∗ -triples associated to the following Cauchy–Jensen type additive functional equation f ( x + y 2 + z ) + f ( x + z 2 + y ) + f ( y + z 2 + x ) = 2[f (x) + f (y) + f (z)]. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem that appeared in his paper: On the stabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2007

ISSN: 1846-579X

DOI: 10.7153/jmi-01-20